Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Narodytska, Nina; Ruemmer, Philipp (Ed.)Deep reinforcement learning (DRL) is a powerful machine learning paradigm for generating agents that control autonomous systems. However, the “black box” nature of DRL agents limits their deployment in real-world safety-critical applications. A promising approach for providing strong guarantees on an agent's behavior is to use Neural Lyapunov Barrier (NLB) certifcates, which are learned functions over the system whose properties indirectly imply that an agent behaves as desired. However, NLB-based certifcates are typically diffcult to learn and even more diffcult to verify, especially for complex systems. In this work, we present a novel method for training and verifying NLB-based certifcates for discrete-time systems. Specifcally, we introduce a technique for certifcate composition, which simplifes the verifcation of highly-complex systems by strategically designing a sequence of certifcates. When jointly verifed with neural network verifcation engines, these certifcates provide a formal guarantee that a DRL agent both achieves its goals and avoids unsafe behavior. Furthermore, we introduce a technique for certifcate fltering, which signifcantly simplifes the process of producing formally verifed certifcates. We demonstrate the merits of our approach with a case study on providing safety and liveness guarantees for a DRL-controlled spacecraft.more » « less
-
In recent years, deep reinforcement learning (DRL) approaches have generated highly successful controllers for a myriad of complex domains. However, the opaque nature of these models limits their applicability in aerospace systems and sasfety-critical domains, in which a single mistake can have dire consequences. In this paper, we present novel advancements in both the training and verification of DRL controllers, which can help ensure their safe behavior. We showcase a design-for-verification approach utilizing k-induction and demonstrate its use in verifying liveness properties. In addition, we also give a brief overview of neural Lyapunov Barrier certificates and summarize their capabilities on a case study. Finally, we describe several other novel reachability-based approaches which, despite failing to provide guarantees of interest, could be effective for verification of other DRL systems, and could be of further interest to the community.more » « less
-
Avni, Guy; Giacobbe, Mirco; Johnson, Taylor T; Katz, Guy; Lukina, Anna; Narodytska, Nina; Schilling, Christian (Ed.)Quantization replaces floating point arithmetic with integer arithmetic in deep neural networks, enabling more efficient on-device inference with less power and memory. However, it also brings in loss of generalization and even potential errors to the models. In this work, we propose a parallelization technique for formally verifying the equivalence between quantized models and their original real-valued counterparts. In order to guarantee both soundness and completeness, mixed integer linear programming (MILP) is deployed as the baseline technique. Nevertheless, the incorporation of two networks as well as the mixture of integer and real number arithmetic make the problem much more challenging than verifying a single network, and thus using MILP alone is inadequate for the non-trivial cases. To tackle this, we design a distributed verification technique that can leverage hundreds of CPUs on high-performance computing clusters. We develop a two-tier parallel framework and propose property- and output-based partition strategies. Evaluated on perception networks quantized with PyTorch, our approach outperforms existing methods in successfully verifying many cases that are otherwise considered infeasible.more » « less
An official website of the United States government

Full Text Available